Sunday, May 12, 2013

materi orkom


UNIT MASUKAN DAN KELUARAN

Sistem komputer memiliki tiga komponen utama, yaitu : CPU, memori (primer dan sekunder), dan peralatan masukan/keluaran (I/O devices) seperti printer, monitor, keyboard, mouse, dan modem. Beberapa bab sebelumnya telah membahas CPU dan memori, sekarang akan kita jelaskan tentang peralatan atau modul I/O pada bab ini. 
Modul I/O merupakan peralatan antarmuka (interface) bagi sistem bus atau switch sentral dan mengontrol satu atau lebih perangkat peripheral. Modul I/O tidak hanya sekedar modul penghubung, tetapi sebuah piranti yang berisi logika dalam melakukan fungsi komunikasi antara peripheral dan bus komputer. 
Ada beberapa alasan kenapa piranti – piranti tidak langsung dihubungkan dengan bus sistem komputer, yaitu :
   Bervariasinya metode operasi piranti peripheral, sehingga tidak praktis apabila sistem komputer herus menangani berbagai macam sisem operasi piranti peripheral tersebut. 
   Kecepatan transfer data piranti peripheral umumnya lebih lambat dari pada laju transfer data pada CPU maupun memori. 
   Format data dan panjang data pada piranti peripheral seringkali berbeda dengan CPU, sehingga perlu modul untuk menselaraskannya. 
Dari beberapa alasan diatas, modul I/O memiliki dua buah fungsi utama, yaitu :
1.  Sebagai piranti antarmuka ke CPU dan memori melalui bus sistem. 
2.  Sebagai piranti antarmuka dengan peralatan peripheral lainnya dengan menggunakan link data tertentu. 

Sistem Masukan & Keluaran Komputer
Bagaimana modul I/O dapat menjalankan tugasnya, yaitu menjembatani CPU dan memori dengan dunia luar merupakan hal yang terpenting untuk kita ketahui. Inti mempelajari sistem I/O suatu komputer adalah mengetahui fungsi dan struktur modul I/O.


Fungsi Modul I/O 

Modul I/O adalah suatu komponen dalam sistem komputer yang bertanggung jawab atas pengontrolan sebuah perangkat luar atau lebih dan bertanggung jawab pula dalam pertukaran data antara perangkat luar tersebut dengan memori utama ataupun dengan register – register CPU. Dalam mewujudkan hal ini, diperlukan antarmuka internal dengan komputer (CPU dan memori utama) dan antarmuka dengan perangkat eksternalnya untuk menjalankan fungsi – fungsi pengontrolan. 
Fungsi dalam menjalankan tugas bagi modul I/O dapat dibagi menjadi beberapa katagori, yaitu: 
  Kontrol dan pewaktuan. 
  Komunikasi CPU. 
  Komunikasi perangkat eksternal. 
  Pem-buffer-an data. 
  Deteksi kesalahan. 
Fungsi kontrol dan pewaktuan (control & timing) merupakan hal yang penting untuk mensinkronkan kerja masing – masing komponen penyusun komputer. Dalam sekali waktu CPU berkomunikasi dengan satu atau lebih perangkat dengan pola tidak menentu dan kecepatan transfer komunikasi data yang beragam, baik dengan perangkat internal seperti register – register, memori utama, memori sekunder, perangkat peripheral. Proses tersebut bisa berjalan apabila ada fungsi kontrol dan pewaktuan yang mengatur sistem secara keseluruhan. Contoh kontrol pemindahan data dari peripheral ke CPU melalui sebuah modul I/O dapat meliputi langkah – langkah berikut ini :
1  Permintaan dan pemeriksaan status perangkat dari CPU ke modul I/O. 
2  Modul I/O memberi jawaban atas permintaan CPU. 
3  Apabila perangkat eksternal telah siap untuk transfer data, maka CPU akan mengirimkan perintah ke modul I/O. 
4  Modul I/O akan menerima paket data dengan panjang tertentu dari peripheral. 
5  Selanjutnya data dikirim ke CPU setelah diadakan sinkronisasi panjang data dan kecepatan transfer oleh modul I/O sehingga paket – paket data dapat diterima CPU dengan baik. 
Transfer data tidak akan lepas dari penggunaan sistem bus, maka interaksi CPU dan modul I/O akan melibatkan kontrol dan pewaktuan sebuah arbitrasi bus atau lebih. 
Adapun fungsi komunikasi antara CPU dan modul I/O meliputi proses – proses berikut :
    Command Decoding, yaitu modul I/O menerima perintah – perintah dari CPU yang dikirimkan sebagai sinyal bagi bus kontrol. Misalnya, sebuah modul I/O untuk disk dapat menerima perintah: Read sector, Scan record ID, Format disk. 
    Data, pertukaran data antara CPU dan modul I/O melalui bus data. 
    Status Reporting, yaitu pelaporan kondisi status modul I/O maupun perangkat peripheral, umumnya berupa status kondisi Busyatau Ready. Juga status bermacam – macam kondisi kesalahan (error). 
    Address Recognition, bahwa peralatan atau komponen penyusun komputer dapat dihubungi atau dipanggil maka harus memiliki alamat yang unik, begitu pula pada perangkat peripheral, sehingga setiap modul I/O harus mengetahui alamat peripheral yang dikontrolnya. 
Pada sisi modul I/O ke perangkat peripheral juga terdapat komunikasi yang meliputi komunikasi data, kontrol maupun status.

Fungsi selanjutnya adalah buffering. Tujuan utama buffering adalah mendapatkan penyesuaian data sehubungan perbedaan laju transfer data dari perangkat peripheral dengan kecepatan pengolahan pada CPU. Umumnya laju transfer data dari perangkat peripheral lebih lambat dari kecepatan CPU maupun media penyimpan. 
Fungsi terakhir adalah deteksi kesalahan. Apabila pada perangkat peripheral terdapat masalah sehingga proses tidak dapat dijalankan, maka modul I/O akan melaporkan kesalahan tersebut. Misal informasi kesalahan pada peripheral printer seperti: kertas tergulung, pinta habis, kertas habis, dan lain – lain. Teknik yang umum untuk deteksi kesalahan adalah penggunaan bit paritas. 

Struktur Modul I/O

Terdapat berbagai macam modul I/O seiring perkembangan komputer itu sendiri, contoh yang sederhana dan fleksibel adalah Intel 8255A yang sering disebut PPI (Programmable Peripheral Interface). Bagaimanapun kompleksitas suatu modul I/O, terdapat kemiripan struktur.

Antarmuka modul I/O ke CPU melalui bus sistem komputer terdapat tiga saluran, yaitu saluran data, saluran alamat dan saluran kontrol. Bagian terpenting adalah blok logika I/O yang berhubungan dengan semua peralatan antarmuka peripheral, terdapat fungsi pengaturan dan switching pada blok ini. 

Teknik Masukan/Keluaran 

Terdapat tiga buah teknik dalam operasi I/O, yaitu: I/O terprogram, interrupt – driven I/O, dan DMA (Direct Memory Access). Ketiganya memiliki keunggulan maupun kelemahan, yang penggunaannya disesuaikan sesuai unjuk kerja masing – masing teknik. 

I/O Terprogram 

Pada I/O terprogram, data saling dipertukarkan antara CPU dan modul I/O. CPU mengeksekusi program yang memberikan operasi I/O kepada CPU secara langsung, seperti pemindahan data, pengiriman perintah baca maupun tulis, dan monitoring perangkat. 
Kelemahan teknik ini adalah CPU akan menunggu sampai operasi I/O selesai dilakukan modul I/O sehingga akan membuang waktu, apalagi CPU lebih cepat proses operasinya. Dalam teknik ini, modul I/O tidak dapat melakukan interupsi kepada CPU terhadap proses – proses yang diinteruksikan padanya. Seluruh proses merupakan tanggung jawab CPU sampai operasi lengkap dilaksanakan. 
Untuk melaksanakan perintah – perintah I/O, CPU akan mengeluarkan sebuah alamat bagi modul I/O dan perangkat peripheralnya sehingga terspesifikasi secara khusus dan sebuah perintah I/O yang akan dilakukan. Terdapat empat klasifikasi perintah I/O, yaitu: 
1.  Perintah control.
Perintah ini digunkan untuk mengaktivasi perangkat peripheral dan memberitahukan tugas yang diperintahkan padanya. 
2.  Perintah test.
Perintah ini digunakan CPU untuk menguji berbagai kondisi status modul I/O dan peripheralnya. CPU perlu mengetahui perangkat peripheralnya dalam keadaan aktif dan siap digunakan, juga untuk mengetahui operasi – operasi I/O yang dijalankan serta mendeteksi kesalahannya. 
3.  Perintah read.
Perintah pada modul I/O untuk mengambil suatu paket data kemudian menaruh dalam buffer internal. Proses selanjutnya paket data dikirim melalui bus data setelah terjadi sinkronisasi data maupun kecepatan transfernya. 
4.  Perintah write.
Perintah ini kebalikan dari read. CPU memerintahkan modul I/O untuk mengambil data dari bus data untuk diberikan pada perangkat peripheral tujuan data tersebut. 

Dalam teknik I/O terprogram, terdapat dua macam inplementasi perintah I/O yang tertuang dalam instruksi I/O, yaitu: memory-mapped I/O dan isolated I/O
Dalam memory-mapped I/O, terdapat ruang tunggal untuk lokasi memori dan perangkat I/O. CPU memperlakukan register status dan register data modul I/O sebagai lokasi memori dan menggunakan instruksi mesin yang sama untuk mengakses baik memori maupun perangkat I/O. Konskuensinya adalah diperlukan saluran tunggal untuk pembacaan dan saluran tunggal untuk penulisan. Keuntungan memory-mapped I/O adalah efisien dalam pemrograman, namun memakan banyak ruang memori alamat. 
Dalam teknik isolated I/O, dilakukan pemisahan ruang pengalamatan bagi memori dan ruang pengalamatan bagi I/O. Dengan teknik ini diperlukan bus yang dilengkapi dengan saluran pembacaan dan penulisan memori ditambah saluran perintah output. Keuntungan isolated I/O adalah sedikitnya instruksi I/O. 

Interrupt – Driven I/O

Teknik interrupt – driven I/O memungkinkan proses tidak membuang – buang waktu. Prosesnya adalah CPU mengeluarkan perintah I/O pada modul I/O, bersamaan perintah I/O dijalankan modul I/O maka CPU akan melakukan eksekusi perintah – perintah lainnya. Apabila modul I/O telah selesai menjalankan instruksi yang diberikan padanya akan melakukan interupsi pada CPU bahwa tugasnya telah selesai. 
Dalam teknik ini kendali perintah masih menjadi tanggung jawab CPU, baik pengambilan perintah dari memori maupun pelaksanaan isi perintah tersebut. Terdapat selangkah kemajuan dari teknik sebelumnya, yaitu CPU melakukan multitasking beberapa perintah sekaligus sehingga tidak ada waktu tunggu bagi CPU. 
Cara kerja teknik interupsi di sisi modul I/O adalah modul I/O menerima perintah, misal read. Kemudian modul I/O melaksanakan perintah pembacaan dari peripheral dan meletakkan paket data ke register data modul I/O, selanjutnya modul mengeluarkan sinyal interupsi ke CPU melalui saluran kontrol. Kemudian modul menunggu datanya diminta CPU. Saat permintaan terjadi, modul meletakkan data pada bus data dan modul siap menerima perintah selanjutnya.  Pengolahan interupsi saat perangkat I/O telah menyelesaikan sebuah operasi I/O adalah sebagai berikut :
1.  Perangkat I/O akan mengirimkan sinyal interupsi ke CPU. 
2.  CPU menyelesaikan operasi yang sedang dijalankannya kemudian merespon interupsi. 
3.  CPU memeriksa interupsi tersebut, kalau valid maka CPU akan mengirimkan sinyal acknowledgment ke perangkat I/O untuk menghentikan interupsinya. 
4.  CPU mempersiapkan pengontrolan transfer ke routine interupsi. Hal yang dilakukan adalah menyimpan informasi yang diperlukan untuk melanjutkan operasi yang tadi dijalankan sebelum adanya interupsi. Informasi yang diperlukan berupa: 
a.  Status prosesor, berisi register yang dipanggil PSW (program status word). 
b.  Lokasi intruksi berikutnya yang akan dieksekusi. 
    Informasi tersebut kemudian disimpan dalam stack pengontrol sistem. 
5.  Kemudian CPU akan menyimpan PC (program counter) eksekusi sebelum interupsi ke stack pengontrol bersama informasi PSW. Selanjutnya mempersiapkan PC untuk penanganan interupsi. 
6.  Selanjutnya CPU memproses interupsi sempai selesai. 
7.  Apabila pengolahan interupsi selasai, CPU akan memanggil kembali informasi yang telah disimpan pada stack pengontrol untuk meneruskan operasi sebelum interupsi. 
    Terdapat bermacam teknik yang digunakan CPU dalam menangani program interupsi ini, diantaranya :
  Multiple Interrupt Lines
  Software poll
  Daisy Chain
  Arbitrasi bus
Teknik yang paling sederhana adalah menggunakan saluran interupsi berjumlah banyak (Multiple Interrupt Lines) antara CPU dan modul – modul I/O. Namun tidak praktis untuk menggunakan sejumlah saluran bus atau pin CPU ke seluruh saluran interupsi modul – modul
I/O. 
Alternatif lainnya adalah menggunakan software poll. Prosesnya, apabila CPU mengetahui adanya sebuah interupsi, maka CPU akan menuju ke routine layanan interupsi yang tugasnya melakukan poll seluruh modul I/O untuk menentukan modul yang melakukan interupsi. Kerugian software poll adalah memerlukan waktu yang lama karena harus mengidentifikasi seluruh modul untuk mengetahui modul I/O yang melakukan interupsi. 
Teknik yang lebih efisien adalah daisy chain, yang menggunakan hardware poll. Seluruh modul I/O tersambung dalam saluran interupsi CPU secara melingkar (chain). Apabila ada permintaan interupsi, maka CPU akan menjalankan sinyal acknowledge yang berjalan pada saluran interupsi sampai menjumpai modul I/O yang mengirimkan interupsi. 
Teknik berikutnya adalah arbitrasi bus. Dalam metode ini, pertama – tama modul I/O memperoleh kontrol bus sebelum modul ini menggunakan saluran permintaan interupsi. Dengan demikian hanya akan terdapat sebuah modul I/O yang dapat melakukan interupsi. 

Pengontrol Interrupt Intel 8259A 

Intel mengeluarkan chips 8259A yang dikonfigurasikan sebagai interrupt arbiter pada mikroprosesor Intel 8086. Intel 8259A melakukan manajemen interupsi modul - modul I/O yang tersambung padanya. Chips ini dapat diprogram untuk menentukan prioritas modul I/O yang lebih dulu ditangani CPU apabila ada permintaan interupsi yang bersamaan. Gambar 6.4 menggambarkan pemakaian pengontrol interupsi 8259A. Berikut mode – mode interupsi yang mungkin terjadi :
    Fully Nested: permintaan interupsi dengan prioritas mulai 0 (IR0) hingga 7(IR7). 
    Rotating: bila sebuah modul telah dilayani interupsinya akan menempati prioritas terendah. 
    Special Mask: prioritas diprogram untuk modul I/O tertentu secara spesial.

Programmable Peripheral Interface Intel 8255A 

Contoh modul I/O yang menggunakan I/O terprogram dan interrupt driven I/O adalah Intel 8255A Programmable Peripheral Interface (PPI). Intel 8255A dirancang untuk keperluan mikroprosesor 8086. Gambar 6.5 menunjukkan blok diagram Intel 8255A dan pin layout-nya.

Bagian kanan dari blok diagram Intel 8255A adalah 24 saluran antarmuka luar, terdiri atas 8 bit port A, 8 bit port B, 4 bit port CA dan 4 bit port CB. Saluran tersebut dapat diprogram dari mikroprosesor 8086 dengan menggunakan register kontrol untuk menentukan bermacam – macam mode operasi dan konfigurasinya. Bagian kiri blok diagram merupakan interface internal dengan mikroprosesor 8086. Saluran ini terdiri atas 8 bus data dua arah (D0 – D7), bus alamat, dan bus kontrol yang terdiri atas saluran CHIP SELECT, READ, WRITE, dan RESET. 
Pengaturan mode operasi pada register kontrol dilakukan oleh mikroprosesor., Pada Mode 0, ketiga port berfungsi sebagai tiga port I/O 8 bit. Pada mode lain dapat port A dan port B sebagai port I/O 8 bit, sedangkan port C sebagai pengontrol saluran port A dan B. 

Direct Memory Access (DMA) 

Teknik yang dijelaskan sebelumnya yaitu I/O terprogram dan Interrupt-Driven I/O memiliki kelemahan, yaitu proses yang terjadi pada modul I/O masih melibatkan CPU secara langsung. Hal ini berimplikasi pada :
  Kelajuan transfer I/O yang tergantung pada kecepatan operasi CPU. 
  Kerja CPU terganggu karena adanya interupsi secara langsung. 
Bertolak dari kelemahan di atas, apalagi untuk menangani transfer data bervolume besar dikembangkan teknik yang lebih baik, dikenal dengan Direct Memory Access (DMA). 
Prinsip kerja DMA adalah CPU akan mendelegasikan kerja I/O kepada DMA, CPU hanya akan terlibat pada awal proses untuk memberikan instruksi lengkap pada DMA dan akhir proses saja. Dengan demikian CPU dapat menjalankan proses lainnya tanpa banyak terganggu dengan interupsi.

Dalam melaksanakan transfer data secara mandiri, DMA memerlukan pengambilalihan kontrol bus dari CPU. Untuk itu DMA akan menggunakan bus bila CPU tidak menggunakannya atau DMA memaksa CPU untuk menghentikan sementara penggunaan bus. Teknik terakhir lebih umum digunakan, sering disebut cycle-stealing, karena modul DMA mengambil alih siklus bus. Penghentian sementara penggunaan bus bukanlah bentuk interupsi, melainkan hanyalah penghentian proses sesaat yang berimplikasi hanya pada kelambatan eksekusi CPU saja. Terdapat tiga buah konfigurasi modul DMA seperti yang terlihat pada gambar 6.8. 

Perangkat Eksternal

Mesin komputer akan memiliki nilai apabila bisa berinteraksi dengan dunia luar. Lebih dari itu, komputer tidak akan berfungsi apabila tidak dapat berinteraksi dengan dunia luar. Ambil contoh saja, bagaimana kita bisa menginstruksikan CPU untuk melakukan suatu operasi apabila tidak ada keyboard. Bagaimana kita melihat hasil kerja sistem komputer bila tidak ada monitor. Keyboard dan monitor tergolang dalam perangkat eksternal komputer. 
Perangkat eksternal atau lebih umum disebut peripheral tersambung dalam sistem CPU melalui perangat pengendalinya, yaitu modul I/O seperti telah dijelaskan sebelumnya. Lihat kembali gambar 6.2. Secara umum perangkat eksternal diklasifikasikan menjadi 3 katagori: 
    Human Readable, yaitu perangkat yang berhubungan dengan manusia sebagai pengguna komputer. Contohnya: monitor, keyboard, mouse, printer, joystick, disk drive. 
    Machine readable, yaitu perangkat yang berhubungan dengan peralatan. Biasanya berupa modul sensor dan tranduser untuk monitoring dan kontrol suatu peralatan atau sistem. 
    Communication, yatu perangkat yang berhubungan dengan komunikasi jarak jauh. Misalnya: NIC dan modem. 
Pengklasifikasian juga bisa berdasarkan arah datanya, yaitu perangkat output, perangkat input dan kombinasi output-input. Contoh perangkat output: monitor, proyektor dan printer.
Perangkat input misalnya: keyboard, mouse, joystick, scanner, mark reader, bar code reader. 






STRUKTUR CPU

Seperti telah dijelaskan pada bagian pengantar, bahwa komputer digital terdiri dari sistem prosesor atau sering disebut CPU, memori – memori, dan piranti masukan/keluaran yang saling berhubungan dan saling dukung mewujudkan fungsi operasi komputer secara keseluruhan. 

Komponen Utama CPU 

CPU merupakan komponen terpenting dari sistem komputer. CPU adalah komponen pengolah data berdasarkan instruksi – instruksi yang diberikan kepadanya. 
Dalam mewujudkan fungsi dan tugasnya, CPU tersusun atas beberapa komponen sebagai bagian dari struktur CPU, seperti terlihat pada gambar 3.1 dan struktur detail internal CPU terlihat pada gamber 3.2. CPU tersusun atas beberapa komponen, yaitu :
    Arithmetic and Logic Unit (ALU), bertugas membentuk fungsi – fungsi pengolahan data komputer. ALU sering disebut mesin bahasa (machine language) karena bagian ini mengerjakan instruksi – instruksi bahasa mesin yang diberikan padanya. Seperti istilahnya, ALU terdiri dari dua bagian, yaitu unit arithmetika dan unit logika boolean, yang masing – masing memiliki spesifikasi tugas tersendiri. 
    Control Unit, bertugas mengontrol operasi CPU dan secara keselurahan mengontrol komputer sehingga terjadi sinkronisasi kerja antar komponen dalam menjalankan fungsi – fungsi operasinya. Termasuk dalam tanggung jawab unit kontrol adalah mengambil instruksi – instruksi dari memori utama dan menentukan jenis instruksi tersebut. 
    Registers, adalah media penyimpan internal CPU yang digunakan saat proses pengolahan data. Memori ini bersifat sementara, biasanya digunakan untuk menyimpan data saat diolah ataupun data untuk pengolahan selanjutnya. 
    CPU Interconnections, adalah sistem koneksi dan bus yang menghubungkan komponen internal CPU, yaitu ALU, unit kontrol dan register – register dan juga dengan bus – bus eksternal CPU yang menghubungkan dengan sistem lainnya, seperti memori utama, piranti masukan/keluaran.




Gambar 3.1 Komponen internal CPU

Gambar 3.2 Struktur detail internal CPU

Fungsi CPU 

Fungsi CPU adalah penjalankan program – program yang disimpan dalam memori utama dengan cara mengambil instruksi – instruksi, menguji instruksi tersebut dan mengeksekusinya satu persatu sesuai alur perintah. 
Untuk memahami fungsi CPU dan caranya berinteraksi dengan komponen lain, perlu kita tinjau lebih jauh proses eksekusi program. Pandangan paling sederhana proses eksekusi program adalah dengan mengambil pengolahan instruksi yang terdiri dari dua langkah, yaitu : operasi pembacaan instruksi (fetch) dan operasi pelaksanaan instruksi (execute).

Siklus Fetch - Eksekusi 

Pada setiap siklus instruksi, CPU awalnya akan membaca instruksi dari memori. Terdapat register dalam CPU yang berfungsi mengawasi dan menghitung instruksi selanjutnya, yang disebut Program Counter (PC). PC akan menambah satu hitungannya setiap kali CPU membaca instruksi. 
Instruksi – instruksi yang dibaca akan dibuat dalam register instruksi (IR). Instruksi – instruksi ini dalam bentuk kode – kode binner yang dapat diinterpretasikan oleh CPU kemudian dilakukan aksi yang diperlukan. Aksi – aksi ini dikelompokkan menjadi empat katagori, yaitu :
    CPU – Memori, perpindahan data dari CPU ke memori dan sebaliknya. 
    CPU –I/O, perpindahan data dari CPU ke modul I/O dan sebaliknya. 
    Pengolahan Data, CPU membentuk sejumlah operasi aritmatika dan logika terhadap data. 
    Kontrol, merupakan instruksi untuk pengontrolan fungsi atau kerja. Misalnya instruksi pengubahan urusan eksekusi. 
Perlu diketahui bahwa siklus eksekusi untuk suatu instruksi dapat melibatkan lebih dari sebuah referensi ke memori. Disamping itu juga, suatu instruksi dapat menentukan suatu operasi I/O. Perhatikan gambar 3.4 yang merupakan detail siklus operasi pada gambar 3.3, yaitu :
    Instruction Addess Calculation (IAC), yaitu mengkalkulasi atau menentukan alamat instruksi berikutnya yang akan dieksekusi. Biasanya melibatkan penambahan bilangan tetap ke alamat instruksi sebelumnya. Misalnya, bila panjang setiap instruksi 16 bit padahal memori memiliki panjang 8 bit, maka tambahkan 2 ke alamat sebelumnya. 
    Instruction Fetch (IF), yaitu membaca atau pengambil instruksi dari lokasi memorinya ke CPU. 
    Instruction Operation Decoding (IOD), yaitu menganalisa instruksi untuk menentukan jenis operasi yang akan dibentuk dan operand yang akan digunakan. 
    Operand Address Calculation (OAC), yaitu menentukan alamat operand, hal ini dilakukan apabila melibatkan referensi operand pada memori. 
    Operand Fetch (OF), adalah mengambil operand dari memori atau dari modul I/O. 
    Data Operation (DO), yaitu membentuk operasi yang diperintahkan dalam instruksi. 
    Operand store (OS), yaitu menyimpan hasil eksekusi ke dalam memori. 

Fungsi Interrupt 

Fungsi interupsi adalah mekanisme penghentian atau pengalihan pengolahan instruksi dalam CPU kepada routine interupsi. Hampir semua modul (memori dan I/O) memiliki mekanisme yang dapat menginterupsi kerja CPU. 
Tujuan interupsi secara umum untuk menejemen pengeksekusian routine instruksi agar efektif dan efisien antar CPU dan modul – modul I/O maupun memori. Setiap komponen komputer dapat menjalankan tugasnya secara bersamaan, tetapi kendali terletak pada CPU disamping itu kecepatan eksekusi masing – masing modul berbeda sehingga dengan adanya fungsi interupsi ini dapat sebagai sinkronisasi kerja antar modul. Macam – macam kelas sinyal interupsi :
    Program, yaitu interupsi yang dibangkitkan dengan beberapa kondisi yang terjadi pada hasil eksekusi program. Contohnya: arimatika overflow, pembagian nol, oparasi ilegal. 
    Timer, adalah interupsi yang dibangkitkan pewaktuan dalam prosesor. Sinyal ini memungkinkan sistem operasi menjalankan fungsi tertentu secara reguler. 
    I/O, sinyal interupsi yang dibangkitkan oleh modul I/O sehubungan pemberitahuan kondisi error dan penyelesaian suatu operasi. 
    Hardware failure, adalah interupsi yang dibangkitkan oleh kegagalan daya atau kesalahan paritas memori. 
Dengan adanya mekanisme interupsi, prosesor dapat digunakan untuk mengeksekusi instruksi – instruksi lain. Saat suatu modul telah selesai menjalankan tugasnya dan siap menerima tugas berikutnya maka modul ini akan mengirimkan permintaan interupsi ke prosesor. Kemudian prosesor akan menghentikan eksekusi yang dijalankannya untuk menghandel routine interupsi. Setelah program interupsi selesai maka prosesor akan melanjutkan eksekusi programnya kembali. Saat sinyal interupsi diterima prosesor ada dua kemungkinan tindakan, yaitu interupsi diterima/ditangguhkan dan interupsi ditolak. Apabila interupsi ditangguhkan, prosesor akan melakukan hal – hal dibawah ini :
1.  Prosesor menangguhkan eksekusi program yang dijalankan dan menyimpan konteksnya. Tindakan ini adalah menyimpan alamat instruksi berikutnya yang akan dieksekusi dan data lain yang relevan. 
2.  Prosesor menyetel program counter (PC) ke alamat awal routine interrupt handler

Untuk sistem operasi yang kompleks sangat dimungkinkan adanya interupsi ganda (multiple interrupt). Misalnya suatu komputer akan menerima permintaan interupsi saat proses pencetakan dengan printer selesai, disamping itu dimungkinkan dari saluran komunikasi akan mengirimkan permintaan interupsi setiap kali data tiba. Dalam hal ini prosesor harus menangani interupsi ganda. 
Dapat diambil dua buah pendekatan untuk menangani interupsi ganda ini. Pertama adalah menolak atau tidak mengizinkan interupsi lain saat suatu interupsi ditangani prosesor. Kemudian setelah prosesor selesai menangani suatu interupsi maka interupsi lain baru di tangani. Pendekatan ini disebut pengolahan interupsi berurutan / sekuensial. Pendekatan ini cukup baik dan sederhana karena interupsi ditangani dalam ututan yang cukup ketat. Kelemahan pendekatan ini adalah metode ini tidak memperhitungkan prioritas interupsi. Pendekatan ini diperlihatkan pada gambar 3.6a. 
Pendekatan kedua adalah dengan mendefinisikan prioritas bagi interupsi dan interrupt handler mengizinkan interupsi berprioritas lebih tinggi ditangani terlebih dahulu. Pedekatan ini disebut pengolahan interupsi bersarang.
Sebagai contoh untuk mendekatan bersarang, misalnya suatu sistem memiliki tiga perangkat I/O: printer, disk, dan saluran komunikasi, masing – masing prioritasnya 2, 4 dan 5. Pada awal sistem melakukan pencetakan dengan printer, saat itu terdapat pengiriman data pada saluran komunikasi sehingga modul komunikasi meminta interupsi. Proses selanjutnya adalah pengalihan eksekusi interupsi mudul komunikasi, sedangkan interupsi printer ditangguhkan. Saat pengeksekusian modul komunikasi terjadi interupsi disk, namun karena prioritasnya lebih rendah maka interupsi disk ditangguhkan. Setelah interupsi modul komunikasi selesai akan dilanjutkan interupsi yang memiliki prioritas lebih tinggi, yaitu disk. Bila interupsi disk selesai dilanjutkan eksekusi interupsi printer. Selanjutnya dilanjutkan eksekusi program utama. 



MEMORI

Memori adalah bagian dari komputer tempat program – program dan data – data disimpan. Bebarapa pakar komputer (terutama dari Inggris) menggunakan istilah store atau storage untuk memori, meskipun kata storage sering digunakan untuk menunjuk ke penyimpanan disket. Tanpa sebuah memori sebagai tempat untuk mendapatkan informasi guna dibaca dan ditulis oleh prosesor maka tidak akan ada komputer – komputer digital dengan sistem penyimpanan program. 
Walaupun konsepnya sederhana, memori komputer memiliki aneka ragam jenis, teknologi, organisasi, unjuk kerja dan harganya. Dalam bab ini akan dibahas mengenai memori internal dan bab selanjutnya membahas memori eksternal. Perlu dijelaskan sebelumnya perbedaan keduanya yang sebenarnya fungsinya sama untuk penyimpanan program maupun data. Memori internal adalah memori yang dapat diakses langsung oleh prosesor. Sebenarnya terdapat beberapa macam memori internal, yaitu register yang terdapat di dalam prosesor, cache memori dan memori utama berada di luar prosesor. Sedangkan memori eksternal adalah memori yang diakses prosesor melalui piranti I/O, seperti disket dan hardisk. 

Operasi Sel Memori 

Elemen dasar memori adalah sel memori. Walaupun digunakan digunakan sejumlah teknologi elektronik, seluruh sel memori memiliki sifat – sifat tertentu :
    Sel memori memiliki dua keadaan stabil (atau semi-stabil), yang dapat digunakan untuk merepresentasikan bilangan biner 1 atau 0. 
    Sel memori mempunyai kemampuan untuk ditulisi (sedikitnya satu kali). 
    Sel memori mempunyai kemampuan untuk dibaca. 
Gambar 4.1 menjelaskan operasi sel memori. Umumnya sel memori mempunyai tiga terminal fungsi yang mampu membawa sinyal listrik. Terminal select berfungsi memilih operasi tulis atau baca. Untuk penulisan, terminal lainnya menyediakan sinyal listrik yang men-set keadaan sel brnilai 1 atau 0, sedangkan untuk operasi pembacaan, terminal ini digunakan sebagai keluaran.

Karakteristik Sistem Memori 

Untuk mempelajari sistem memori secara keseluruhan, harus mengetahui karakteristik – karakteristik kuncinya
Dilihat dari lokasi, memori dibedakan menjadi beberapa jenis, yaitu register, memori internal dan memori eksternal. Register berada di dalam chip prosesor, memori ini diakses langsung oleh prosesor dalam menjalankan operasinya. Register digunakan sebagai memori sementara dalam perhitungan maupun pengolahan data dalam prosesor. Memori internal adalah memori yang berada diluar chip prosesor namun mengaksesannya langsung oleh prosesor. Memori internal dibedakan menjadi memori utama dan cache memori. Memori eksternal dapat diakses oleh prosesor melalui piranti I/O, memori ini dapat berupa disk maupun pita. 
Karakteristik lainnya adalah kapasitas. Kapasitas memori internal maupun eksternal biasanya dinyatakan dalam mentuk byte (1 byte = 8 bit) atau word. Panjang word umumnya 8, 16, 32 bit. Memori eksternal biasanya lebih besar kapasitasnya daripada memori internal, hal ini disebabkan karena teknologi dan sifat penggunaannya yang berbeda. 
Karakteristik berikutnya adalah satuan tranfer. Bagi memori internal, satuan tranfer sama dengan jumlah saluran data yang masuk ke dan keluar dari modul memori. Jumlah saluran ini sering kali sama dengan panjang word, tapi dimungkinkan juga tidak sama. Tiga konsep yang berhubungan dengan satuan transfer :
    Word, merupakan satuan “alami” organisasi memori. Ukuran word biasanya sama dengan jumlah bit yang digunakan untuk representasi bilangan dan panjang instruksi. 
    Addressable units, pada sejumlah sistem, adressable units adalah word. Namun terdapat sistem dengan pengalamatan pada tingkatan byte. Pada semua kasus hubungan antara panjang A suatu alamat dan jumlah N adressable unit adalah 2A =N. 
    Unit of tranfer, adalah jumlah bit yang dibaca atau dituliskan ke dalam memori pada suatu saat. Pada memori eksternal, tranfer data biasanya lebih besar dari suatu word, yang disebut dengan block
Perbedaan tajam yang terdapat pada sejumlah jenis memori adalah metode access-nya. Terdapat empat macam metode :
    Sequential access, memori diorganisasi menjadi unit – unit data yang disebut record. Akses harus dibuat dalam bentuk urutan linier yang spesifik. Informasi mengalamatan yang disimpan dipakai untuk memisahkan record – record dan untuk membantu proses pencarian. Terdapat shared read/write mechanism untuk penulisan/pembacaan memorinya. Pita magnetik merupakan memori yang menggunakan metode sequential access. 
    Direct access, sama sequential access terdapat shared read/write mechanism. Setiap blok dan record memiliki alamat unik berdasarkan lokasi fisiknya. Akses dilakukan langsung pada alamat memori. Disk adalah memori direct access.
    Random access, setiap lokasi memori dipilih secara random dan diakses serta dialamati secara langsung. Contohnya adalah memori utama. 
    Associative access, merupakan jenis random akses yang memungkinkan pembandingan lokasi bit yang diinginkan untuk pencocokan. Jadi data dicari berdasarkan isinya bukan alamatnya dalam memori. Contoh memori ini adalah cache memori yang akan dibahas di akhir bab ini. 
Berdasarkan karakteristik unjuk kerja, memiliki tiga parameter utama pengukuran unjuk kerja, yaitu :
    Access time, bagi random access memory, waktu akses adalah waktu yang dibutuhkan untuk melakukan operasi baca atau tulis. Sedangkan untuk memori non-random akses merupakan waktu yang dibutuhkan dalam melakukan mekanisme baca atau tulis pada lokasi tertentu. 
    Memory cycle time, konsep ini digunakan pada random access memory dan terdiri dari access time ditambah dengan waktu yang diperlukan transient agar hilang pada saluran sinyal. 
    Transfer rate, adalah kecepatan data transfer ke unit memori atau dari unit memori. Pada random access memory sama dengan 1/(cycle time).
Jenis tipe fisik memori yang digunakan saat ini adalah memori semikonduktor dengan teknologi VLSI dan memori permukaan magnetik seperti yang digunakan pada disk dan pita magnetik. 
Berdasarkan karakteristik fisik, media penyimpanan dibedakan menjadi volatile dan nonvolatile, serta erasable dan nonerasable. Pada volatile memory, informasi akan hilang apabila daya listriknya dimatikan, sedangkan non-volatile memory tidak hilang walau daya listriknya hilang. Memori permukaan magnetik adalah contoh no-nvolatile memory, sedangkan semikonduktor ada yang volatile dan non-volatile. Ada jenis memori semikonduktor yang tidak bisa dihapus kecuali dengan menghancurkan unit storage-nya, memori ini dikenal dengan ROM (Read Only Memory).

Keandalan Memori 

Untuk memperoleh keandalan sistem ada tiga pertanyaan yang diajukan: Berapa banyak ? Berapa cepat? Berapa mahal? 
Pertanyaan berapa banyak adalah sesuatu yang sulit dijawab, karena berapapun kapasitas memori tentu aplikasi akan menggunakannya. Jawaban pertanyaan berapa cepat adalah memori harus mempu mengikuti kecepatan CPU sehingga terjadi sinkronisasi kerja antar CPU dan memori tanpa adanya waktu tunggu karena komponen lain belum selesai prosesnya. Mengenai harga, sangatlah relatif. Bagi produsen selalu mencari harga produksi paling murah tanpa mengorbankan kualitasnya untuk memiliki daya saing di pasaran. 
Hubungan harga, kapasitas dan waktu akses adalah :
  Semakin kecil waktu akses, semakin besar harga per bitnya. 
  Semakin besar kapasitas, semakin kecil harga per bitnya. 
  Semakin besar kapasitas, semakin besar waktu aksesnya. 
Dilema yang dihadapi para perancang adalah keinginan menerapkan teknologi untuk kapasitas memori yang besar karena harga per bit yang murah namun hal itu dibatasi oleh teknologi dalam memperoleh waktu akses yang cepat. Salah satu pengorganisasian masalah ini adalah menggunakan hirarki memori. Seperti terlihat pada gambar 4.2, bahwa semakin menurunnya hirarki maka hal berikut akan terjadi :
  Penurunan harga/bit 
  Peningkatan kapasitas 
  Peningkatan waktu akses 
  Penurunan frekuensi akses memori oleh CPU. 
Kunci keberhasilan hirarki ini pada penurunan frekuensi aksesnya. Semakin lambat memori maka keperluan CPU untuk mengaksesnya semakin sedikit. Secara keseluruhan sistem komputer akan tetap cepat namun kebutuhan kapasitas memori besar terpenuhi.



Satuan Memori 

Satuan pokok memori adalah digit biner, yang disebut bit. Suatu bit dapat berisi sebuah angka 0 atau 1. Ini adalah satuan yang paling sederhana. Memori juga dinyatakan dalam byte (1 byte = 8 bit). Kumpulan byte dinyatakan dalam word. Panjang word yang umum adalah 8, 16, dan 32 bit. 

Memori Utama Semikonduktor 

Pada komputer lama, bentuk umum random access memory untuk memori utama adalah sebuah piringan ferromagnetik berlubang yang dikenal sebagai core, istilah yang tetap dipertahankan hingga saat ini. 

Jenis Memori Random Akses 

Semua jenis memori yang dibahas pada bagian ini adalah berjenis random akses, yaitu data secara langsung diakses melalui logik pengalamatan wired-in. Tabel 4.4 adalah daftar jenis memori semikonduktor utama. 
Hal yang membedakan karakteristik RAM (Random Access Memory) adalah dimungkinkannya pembacaan dan penulisan data ke memori secara cepat dan mudah. Aspek lain adalah RAM bersifat volatile, sehingga RAM hanya menyimpan data sementara. Teknologi yang berkembang saat ini adalah statik dan dinamik. RAM dinamik disusun oleh sel – sel yang menyimpan data sebagai muatan listrik pada kapasitor. Karena kapasitor memiliki kecenderungan alami untuk mengosongkan muatan, maka RAM dinamik memerlukan pengisian muatan listrik secara periodik untuk memelihara penyimpanan data. Pada RAM statik, nilai biner disimpan dengan menggunakan konfigurasi gate logika flipflop tradisional. RAM statik akan menyimpan data selama ada daya listriknya. 
RAM statik maupun dinamik adalah volatile, tetapi RAM dinamik lebih sederhana dan rapat sehingga lebih murah. RAM dinamik lebih cocok untuk kapasitas memori besar, namun RAM statik umumnya lebih cepat. 
Read only memory (ROM) sangat berbeda dengan RAM, seperti namanya, ROM berisi pola data permanen yang tidak dapat diubah. Data yang tidak bisa diubah menimbulkan keuntungan dan juga kerugian. Keuntungannya untuk data yang permanen dan sering digunakan pada sistem operasi maupun sistem perangkat keras akan aman diletakkan dalam ROM. Kerugiaannya apabila ada kesalahan data atau adanya perubahan data sehingga perlu penyisipan – penyisipan. 
Kerugian tersebut bisa diantisipasi dengan jenis programmable ROM, disingkat PROM. ROM dan PROM bersifat non-volatile. Proses penulisan PROm secara elektris dengan peralatan khusus. 
Variasi ROM lainnya adalah read mostly memory, yang sangat berguna untuk aplikasi operasi pembacaan jauh lebih sering daripada operasi penulisan. Terdapat tiga macam jenis, yaitu: EPROM, EEPROM dan flash memory
EEPROM (electrically erasable programmable read only memory) merupakan memori yang dapat ditulisi kapan saja tanpa menghapus isi sebelumnya. EEPROM menggabungkan kelebihan non-volatile dengan fleksibilitas dapat di-update. 
Bentuk memori semikonduktor terbaru adalah flash memory. Memori ini dikenalkan tahun 1980-an dengan keunggulan pada kecepatan penulisan programnya. Flash memory menggunakan teknologi penghapusan dan penulisan elektrik. Seperti halnya EPROM, flash memory hanya membutuhkan sebuah transistor per byte sehingga dapat diperoleh kepadatan tinggi. 
4.5.2 Pengemasan (Packging)
Gambar 4.3a menunjukkan sebuah contoh kemasan EPROM, yang merupakan keping 8 Mbit yang diorganisasi sebagai 1Mx8. Dalam kasus ini, organisasi dianggap sebagai kemasan satu word per keping. Kemasan terdiri dari 32 pin, yang merupakan salah satu ukuran kemasan keping standar. Pin – pin tersebut mendukung saluran – saluran sinyal beikut ini :
   Alamat word yang sedang diakses. Untuk 1M word, diperlukan sejumlah 20 buah (220 = 1M). 
   Data yang akan dibaca, terdiri dari 8 saluran (D0 –D7) 
   Catu daya keping adalah Vcc 
   Pin grounding Vss 
   Pin chip enable (CE). Karena mungkin terdapat lebih dari satu keping memori yang terhubung pada bus yang sama maka pin CE digunakan untuk mengindikasikan valid atau tidaknya pin ini. Pin CE diaktifkan oleh logik yang terhubung dengan bit berorde tinggi bus alamat ( diatas A19) 
   Tegangan program (Vpp). 
Konfigurasi pin DRAM yang umum ditunjukkan gambar 4.3b, untuk keping 16 Mbit yang diorganisasikan sebagai 4M x 4. Terdapat sejumlah perbedaan dengan keping ROM, karena ada operasi tulis maka pin – pin data merupakan input/output yang dikendalikan oleh WE (write enable) dan OE (output enable).

Koreksi Error 
Dalam melaksanakan fungsi penyimpanan, memori semikonduktor dimungkinkan mengalami kesalahan. Baik kesalahan berat yang biasanya merupakan kerusakan fisik memori maupun kesalahan ringan yang berhubungan data yang disimpan. Kesalahan ringan dapat dikoreksi kembali. Untuk mengadakan koreksi kesalahan data yang disimpan diperlukan dua mekanisme, yaitu mekanisme pendeteksian kesalahan dan mekanisme perbaikan kesalahan
Mekanisme pendeteksian kesalahan dengan menambahkan data word (D) dengan suatu kode, biasanya bit cek paritas (C). Sehingga data yang disimpan memiliki panjang D + C. Kesalahan akan diketahui dengan menganalisa data dan bit paritas tersebut. Mekanisme perbaikan kesalahan yang paling sederhana adalah kode Hamming. Metode ini diciptakan Richard Hamming di Bell Lab pada tahun 1950. 
Lalu bagaimana dengan word lebih dari 4 bit ? Ada cara yang mudah yang akan diterangkan berikut. Sebelumnya perlu diketahui jumlah bit paritas yang harus ditambahkan untuk sejumlah bit word. Contoh sebelumnya adalah koreksi kesalahan untuk kesalahan tunggal yang sering disebut single error correcting (SEC). Jumlah bit paritas yang harus ditambahkan lain pada double error correcting (DEC).

Cache Memori 

Cache memori difungsikan mempercepat kerja memori sehingga mendekati kecepatan prosesor. Konsepnya dijelaskan pada gambar 4.6 dan gambar 4.7. Dalam organisasi komputer, memori utama lebih besar kapasitasnya namun lambat operasinya, sedangkan cache memori berukuran kecil namun lebih cepat. Cache memori berisi salinan memori utama. 
Pada saat CPU membaca sebuah word memori, maka dilakukan pemeriksaan untuk mengetahui apakah word tersebut berada dalam cache memori. Bila ada dalam cache memori maka dilakukan pengiriman ke CPU, bila tidak dijumpai maka dicari dalam memori utama, selanjutnya blok yang berisi sejumlah word tersebut dikirim ke cache memori dan word yang diminta CPU dikirimkan ke CPU dari cache memori. Karena fenomena lokalitas referensi, ketika blok data diberikan ke dalam cache memori, terdapat kemungkinan bahwa word-word berikutnya yang berada dalam satu blok akan diakses oleh CPU. Konsep ini yang menjadikan kinerja memori lebih baik.

Sehingga dapat disimpulkan bahwa kerja cache adalah antisipasi terhadap permintaan data memori yang akan digunakan CPU. Apabila data diambil langsung dari memori utama bahkan memori eksternal akan memakan waktu lama yang menyebabkan status tunggu pada prosesor. 
Ukuran cache memori adalah kecil, semakin besar kapasitasnya maka akan memperlambat proses operasi cache memori itu sendiri, disamping harga cache memori yang sangat mahal. 

Elemen Rancangan 

Walaupun terdapat banyak implementasi cache, namun dari sisi organisasi maupun arsitekturnya tidak banyak macamnya. 

Kapasitas Cache 

Menentukan ukuran memori cache sangatlah penting untuk mendongkrak kinerja komputer. Dari segi harga cache sangatlah mahal tidak seperti memori utama. Semakin besar kapasitas cache tidak berarti semakin cepat prosesnya, dengan ukuran besar akan terlalu banya gate pengalamatannya sehingga akan memperlambat proses. 
Kita bisa melihat beberapa merek prosesor di pasaran beberapa waktu lalu. AMD mengeluarkan prosesor K5 dan K6 dengan cache yang besar (1MB) tetapi kinerjanya tidak bagus. Kemudian Intel pernah mengeluarkan prosesor tanpa cache untuk alasan harga yang murah, yaitu seri Intel Celeron pada tahun 1998-an hasil kinerjanya sangat buruk terutama untuk operasi data besar, floating point, 3D. Intel Celeron versi berikutnya sudah ditambah cache sekitar 128KB. 
Lalu berapa idealnya kapasitas cache? Sejumlah penelitian telah menganjurkan bahwa ukuran cache antara 1KB dan 512KB akan lebih optimum [STA96]. 

Ukuran Blok 

Elemen rancangan yang harus diperhatikan lagi adalah ukuran blok. Telah dijelaskan adanya sifat lokalitas referensi maka nilai ukuran blok sangatlah penting. Apabila blok berukuran besar ditransfer ke cache akan menyebabkan hit ratio mengalami penurunan karena banyaknya data yang dikirim disekitar referensi. Tetapi apabila terlalu kecil, dimungkinkan memori yang akan dibutuhkan CPU tidak tercakup. Apabila blok berukuran besar ditransfer ke cache, maka akan terjadi :
1.Blok – blok yang berukuran lebih besar mengurangi jumlah blok yang menempati cache. Karena isi cache sebelumnya akan ditindih. 
2.Dengan meningkatnya ukuran blok maka jarak setiap word tambahan menjadi lebih jauh dari word yang diminta, sehingga menjadi lebih kecil kemungkinannya digunakan cepat. 
Hubungan antara ukuran blok dan hit ratio sangat rumit untuk dirumuskan, tergantung pada karakteristik lokalitas programnya dan tidak terdapat nilai optimum yang pasti telah ditemukan. Ukuran antara 4 hingga 8 satuan yang dapat dialamati (word atau byte) cukup beralasan untuk mendekati nilai optimum [STA96].

Fungsi Pemetaan (Mapping) 

Telah kita ketahui bahwa cache mempunyai kapasitas yang kecil dibandingkan memori utama. Sehingga diperlukan aturan blok – blok mana yang diletakkan dalam cache. Terdapat tiga metode, yaitu pemetaan langsung, pemetaan asosiatif, dan pemetaan asosiatif set. 

Pemetaan Langsung 

Pemetaan langsung adalah teknik yang paling sederhana, yaitu teknik ini memetakan blok memori utama hanya ke sebuah saluran cache saja. Gambar 4.8 menjelaskan mekanisme pemetaan langsung. 

i = j modulus m dan m = 2r  dimana : 
i = nomer saluran cache  j = nomer blok memori utama 
m = jumlah saluran yang terdapat dalam cache 
Fungsi pemetaan diimplementasikan dengan menggunakan alamat, yang terdiri dari tiga field (tag, line, word), lihat gambar 4.8. 
w = word, adalah bit paling kurang berarti yang mengidentifikasikan word atau byte unik dalam blok memori utama. 
s = byte sisa word yang menspesifikasi salah satu dari 2S blok memori utama. Cache logik menginterpretasikan bit – bit S sebagai suatu tag s – r bit (bagian paling berarti dalam alamat) dan field saluran r bit. 
Jadi dalam metode ini pemetaan adalah bagian alamat blok memori utama sebagai nomer saluran cache. Ketika suatu blok data sedang diakses atau dibaca terhadap saluran yang diberikan, maka perlu memberikan tag bagi data untuk membedakannya dengan blok – blok lain yang dapat sesuai dengan saluran tersebut.

Perlu diketahui bahwa tidak ada dua buah blok yang dipetakan ke nomer saluran uang sama memiliki tag sama. Sehingga 000000, 010000, …., FF0000 masing – masing memiliki tag 00, 01, …., FF. 
Teknik pemetaan ini sederhana dan mudah diimplementasikan, namun kelemahannya adalah terdapat lokasi cache yang tetap bagi sembarang blok – blok yang diketahui. Dengan demikian, apabila suatu program berulang – ulang melakukan word referensi dari dua blok yang berbeda memetakan saluran yang sama maka blok – blok itu secara terus – menerus akan di-swap ke dalam cache sehingga hit rasionya akan rendah. 

Pemetaan Assosiatif 

Pemetaan asosiatif mengatasi kekurangan pemetaan langsung dengan cara setiap blok memori utama dapat dimuat ke sembarang saluran cache. Alamat memori utama diinterpretasikan dalam field tag dan field word oleh kontrol logika cache. Tag secara unik mengidentifikasi sebuah blok memori utama.
Mekanisme untuk mengetahui suatu blok dalam cache dengan memeriksa setiap tag saluran cache oleh kontrol logika cache. Dengan pemetaan ini didapat fleksibilitas dalam penggantian blok baru yang ditempatkan dalam cache. Algoritma penggantian dirancang untuk memaksimalkan hit ratio, yang pada pemetaan langsung terdapat kelemahan dalam bagian ini.
Kekurangan pemetaan asosiatif adalah kompleksitas rangkaian sehingga mahal secara ekonomi. 

Pemetaan Assosiatif Set 

Pemetaan asosiatif set menggabungkan kelebihan yang ada pada pemetaan langsung dan pemetaan asosiatif. Memori cache dibagi dalam bentuk set – set. 
Pemetaan asosiatif set prinsipnya adalah penggabungan kedua pemetaan sebelumnya. Alamat memori utama diinterpretasikan dalam tiga field, yaitu: field tag, field set, dan field word. Hal ini mirip dalam pemetaan langsung. Setiap blok memori utama dapat dimuat dalam sembarang saluran cache. Gambar 4.11 menjelaskan organisasi pemetaan asosiatif set. 
Dalam pemetaan asosiatif set, cache dibagi dalam v buah set, yang masing –masing terdiri dari k saluran. Hubungan yang terjadi adalah :
m = v x k  i = j modulus v dan v = 2d  dimana :
i = nomer set cache  j = nomer blok memori utama  m = jumlah saluran pada cache 

menjelaskan contoh yang menggunakan pemetaan asosiatif set dengan dua saluran pada masing-masing set, yang dikenal sebagai asosiatif set dua arah. Nomor set mengidentifikasi set unik dua saluran di dalam cache. Nomor set ini juga memberikan jumlah blok di dalam memori utama, modulus 2. Jumlah blok menentukan pemetaan blok terhadap saluran. Sehingga blok-blok 000000, 00A000,…,FF1000 pada memori utama dipetakan terhadap set 0 cache. Sembarang blok tersebut dapat dimuatkan ke salah satu dari kedua saluran di dalam set. Perlu dicatat bahwa tidak terdapat dua blok yang memetakannya terhadap set cache yang sama memiliki nomor tag yang sama. Untuk operasi read, nomor set dipakai untuk menentukan set dua saluran yang akan diuji. Kedua saluran di dalam set diuji untuk mendapatkan yang cocok dengan nomor tag alamat yang akan diakses. 
Penggunaan dua saluran per set ( v = m/2, k = 2), merupakan organisasi asosiatif set yang paling umum. Teknik ini sangat meningkatkan hit ratio dibandingkan dengan pemetaan langsung. Asosiatif set empat arah (v = m/4, k = 4) memberikan peningkatan tambahan yang layak dengan penambahan harga yang relatif rendah. Peningkatan lebih lanjut jumlah saluran per set hanya memiliki efek yang sedikit. 

Algoritma Penggantian 

Yang dimaksud Algoritma Penggantian adalah suatu mekanisme pergantian blok – blok dalam memori cache yang lama dengan data baru. Dalam pemetaan langsung tidak diperlukan algoritma ini, namun dalam pemetaan asosiatif dan asosiatif set, algoritma ini mempunyai peranan penting untuk meningkatkan kinerja cache memori. 
Banyak algoritma penggantian yang telah dikembangkan, namun dalam buku ini akan dijelaskan algoritma yang umum digunakan saja. Algoritma yang paling efektif adalah Least Recently Used (LRU), yaitu mengganti blok data yang terlama berada dalam cache dan tidak memiliki referensi. Algoritma lainnya adalah First In First Out(FIFO), yaitu mengganti blok data yang awal masuk. Kemudian Least Frequently Used (LFU) adalah mengganti blok data yang mempunyai referensi paling sedikit. Teknik lain adalah algoritma Random, yaitu penggantian tidak berdasakan pemakaian datanya, melainkan berdasar slot dari beberapa slot kandidat secara acak. 

Write Policy 

Apabila suatu data telah diletakkan pada cache maka sebelum ada penggantian harus dicek apakah data tersebut telah mengalami perubahan. Apabila telah berubah maka data pada memori utama harus di-update. Masalah penulisan ini sangat kompleks, apalagi memori utama dapat diakses langsung oleh modul I/O, yang memungkinkan data pada memori utama berubah, lalu bagaimana dengan data yang telah dikirim pada cache? Tentunya perbedaan ini menjadikan data tidak valid. 
Teknik yang dikenalkan diantaranya, write through, yaitu operasi penulisan melibatkan data pada memori utama dan sekaligus pada cache memori sehingga data selalu valid. Kekurangan teknik ini adalah menjadikan lalu lintas data ke memori utama dan cache sangat tinggi sehingga mengurangi kinerja sistem, bahkan bisa terjadi hang. 
Teknik lainnya adalah write back, yaitu teknik meminimasi penulisan dengan cara penulisan pada cache saja. Pada saat akan terjadi penggantian blok data cache maka baru diadakan penulisan pada memori utama. Masalah yang timbul adalah manakala data di memori utama belum di-update telah diakses modul I/O sehingga data di memori utama tidak valid. 
Penggunaan multi cache terutama untuk multi prosesor adan menjumpai masalah yang lebih kompleks. Masalah validasi data tidak hanya antara cache dan memori utama saja, namun antar cache juga harus diperhatikan. Pendekatan penyelesaian masalah yang dapat dilakukan adalah dengan :
    Bus Watching with Write Through, yaitu setiap cache controller akan memonitoring bus alamat untuk mendeteksi adanya operasi tulis. Apabila ada operasi tulis di alamat yang datanya digunakan bersama maka cache controller akan menginvalidasi data cache-nya. 
    Hardware Transparency, yaitu adanya perangkat keras tambahan yang menjamin semua updating data memori utama melalui cache direfleksikan pada seluruh cache yang ada. 
    Non Cacheable Memory, yaitu hanya bagian memori utama tertentu yang digunakan secara bersama. Apabila ada mengaksesan data yang tidak di share merupakan kegagalan cache. 

Jumlah Cache 
Terdapat dua macam letak cache. Berada dalam keping prosesor yang disebut on chip cache atau cache internal. Kemudian berada di luar chip prosesor yang disebut off chip cache atau cache eksternal. 
Cache internal diletakkan dalam prosesor sehingga tidak memerlukan bus eksternal, akibatnya waktu aksesnya akan cepat sekali, apalagi panjang lintasan internal bus prosesor sangat pendek untuk mengakses cache internal. Cache internal selanjutnya disebut cache tingkat 1 (L1). 
Cache eksternal berada diluar keping chip prosesor yang diakses melalui bus eksternal.
Pertanyaannya, apakah masih diperlukan cache eksternal apabila telah ada cache internal? Dari pengalaman, masih diperlukan untuk mengantisipasi permintaan akses alamat yang belum tercakup dalam cache internal. Cache eksternal selanjutnya disebut cache tingkat 2 (L2).
Selanjutnya terdapat perkembangan untuk memisah cache data dan cache instruksi yang disebut unified cache. Keuntungan unified cache adalah :
   Unified cache memiliki hit rate yang tinggi karena telah dibedakan antara informasi data dan informasi instruksi.
   Hanya sebuah cache saja yang perlu dirancang dan diimplementasikan.
Namun terdapat kecenderungan untuk menggunakan split cache, terutama pada mesin – mesin superscalar seperti Pentium dan PowerPC yang menekankan pada paralel proses dan perkiraan – perkiraan eksekusi yang akan terjadi. Kelebihan utama split cache adalah mengurangi persaingan antara prosesor instruksi dan unit eksekusi untuk mendapatkan cache, yang mana hal ini sangat utama bagi perancangan prosesor – prosesor pipelining.